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The paper deals with the refraction of a plane shock wave by an interface between 
two different gases. It is shown that the equations of motion can be reduced to 
a single polynomial equation of degree 12. Detailed numerical results are pre- 
sented for the air-CH, and the air-CO, interfaces, which are respectively ‘slow- 
fast’ and ‘fast-slow’ combinations. When the results are compared with experi- 
ment good agreement is obtained. The numerical data are multi-valued, but it is 
found that it is always the weakest solution that agrees with the experimental 
data. The multiple roots of the equation are often found to be associated with the 
appearance of degenerate and irregular wave systems and some attempt is made 
to analyse and discuss these systems. 

1. Introduction 
Previous papers (Henderson 1964, 1966) have dealt with the interaction of 

plane shock waves meeting at a point in a perfect gas, and it was found that the 
equations of motion could be reduced to a single polynomial equation of degree 10. 
The objective of the present paper is to apply the same methods to the regular 
refraction of a plane shock wave at a gas interface and in this case it is shown that 
the polynomial is of degree 12. Following the analysis, detailed numerical results 
are presented for the air-CH, and air-CO, interfaces. These gas combinations 
were selected because the theory could then be compared with some experi- 
mental work published by Jahn (1956). The numerical results show that when 
a physically significant root or solution exists then it is multi-valued; for example, 
the number of roots m of physical interest for the air-CH, interface is either 
m = 0,  or 2 ,  but for the air-CO, interface it is either m = 0,2,  or 4. Still more 
solutions can be obtained by considering the regular refraction with a reflected 
expansion wave. The magnitude or strength of a solution may be conveniently 
measured by the strength of the transmitted shock, and the solutions can then 
be arranged as an ordered set of ascending order of magnitude. If  the set is then 
compared with experiment it is found that it is always the weakest member of it 
that actually appears. 

The discussion is based upon the methods developed by Guderley (1947, 1962) 
wherein the flow is mapped simultaneously in the physical (x, y) and hodograph 
(6, PIP,) planes and then a particular sequence of events is deduced by slowly 
and continuously changing the boundary conditions. In  this way the multiple 
roots of the polynomial are often found to be associated with the onset of a variety 
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of degenerate and irregular wave systems and some use is made of this informa- 
tion in an attempt to analyse and discuss the irregular systems photographed 
by Jahn. 

2. Jahn's experiments 
The experiments were carried out in a shock tube which had the essential 

features shown in figure 1. The refraction cell was filled with either methane or 
carbon dioxide at low pressure, and the space outside the cell was filled with air 
a t  the same pressure. The gases were prevented from mixing a t  the interface by 
means of an extremely tenuous membrane with an approximate mass per unit 
area of 5 p g  per em2. There were several reasons for selecting these gas combina- 
tions. Thus at the same temperature the speed of sound in air is smaller than the 
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FIGURE 1. Essential features of the shock tube used in Jahn's experiments. i, Incident 
shock; m, membrane; R, refraction cell; B.P., back plate; D, diaphragm; L.P., Ieading 
plate. 

speed of sound in methane and therefore it was expected that the air-CH, com- 
bination would be typical of the refraction of a plane shock propagating from 
a 'slower' to a 'faster' medium. By contrast the air-GO, interface should be 
typical of a 'fast-slow' refraction. More extreme gas combinations such as 
air-helium and air-freon would be expected to display the phenomena more 
clearly but they could not be used conveniently because of practical difficulties 
with the membrane. A further reason for selecting air-CH, and air-GO, for study 
was that the results could be compared with some theoretical work that had been 
done on these combinations by Polachek & Seeger (1951). 

The incident shock i was formed in the usual way by rupturing a diaphragm 
and it then propagated down the tube to strike the membrane at  a given angle 
of incidence a. The wave pattern was photographed with the help of an interfero- 
meter and from this information the wave angles and density distribution could 
be measured. The phenomena were explored using two shock strengths, namely 
( = (Po/Pl) = 0.3 (strong) and 8 = 0.85 (weak) and for angles of incidence in the 
range a = 0" or normal incidence to Q! = 90" or glancing incidence. The observed 
wave patterns can be conveniently classified into two groups. First, there is the 
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regular group, figure 2, which is characterized by a well-defined refraction point 
and by the property that all the waves lie on straight rays that radiate from this 
point. In this group the reflected wave may be either a shock r or a Prandtl- 
Meyer expansion e, but the transmitted wave is always a shock t. The second 

FIGURE 2. The wave systems in the regular refraction group. 

group are collectively called the irregular refractions and are merely the wave 
systems that are not covered by the above definition; some of the examples 
observed by Jahn are sketched in figures 12(f) ,  13(c), (e), (f), ( g ) ,  and 15(f). 
The data obtained from the experiments on the regular refractions are repro- 
duced in figures 3,4 and 5.  Here the size of the symbols indicates the range of the 
experimental error. When Jahn compared his results with those of Polachek & 
Seeger, he found it necessary to make a number of corrections. For example, 
Polachek & Seeger had used somewhat unrealistic values for the gas properties? 
and Jahn made some approximations to correct for this effect. He also made a 
number of corrections to the experimental data; in particular he corrected for the 
fact that a certain amount of mixing of the gases at  the interface could not be 
prevented. After these adjustments there was satisfactory agreement between 
theory and experiment. A small amount of data has also been published on the 
irregular refraction at  the air-CH, interface and this has been reproduced in 
figure 6. 

3. Analysis of the regular refraction with a reflected shock 
It will be assumed that the wave pattern is stationary and that every point 

on it propagates at  the same absolute velocity. In  particular the velocity of the 
incident and transmitted shocks along the interface will be equal and therefore 

vair = '%H,,co,. 

t The ratio of specific heats was taken to be y = $ for both CH4 and CO,. 
39 Fluid Mech. 26 
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FIGURE 3. Theoretical and experimental results for regular shock-wave refraction with 
5 = 0.85. -, present theory; ---, adjusted Polachek & Seeger theory; +, Jahn’s 
experimental data. 
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FIGURE 4. Theoretical and experimental results for regular shock-wave refraction with 
= 0.3. -, p resent theory; ---, adjusted Polachek &, Seeger theory; + , Jahn’s experi- 

mental data. 
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FIGURE 5. Theoretical and experimental results for regular shock-wave refraction with 
[ = 0.3. -, present theory; ---, adjusted Polachek & Seeger theory; + , Jahn’s experi- 
mental data. 
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FIGURE 6. Theoretical and experimental results for irregular shock-wave refraction with 
[ = 0-3. -, three-shock theory; 0, Jahn’s experimental data; ---, curve of best fit 
through Jahn’s data. 
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The speed of sound will depend on the nature of the gas and its temperature 
a = [yRT/&]g, but it will be supposed that the temperatures of the undisturbed 
gases will be everywhere the same. The following relations may now be obtained 
between the upstream Mach numbers of the incident and transmitted shocks: 

The gas constants were selected after consulting McBride et al. (1963), and 
Hilsenrath et al. (1960) and were as shown in table 1. Equation (1 a )  then becomes 

The flow that exists in a shock tube is referred to as pseudo-stationary or self- 
similar, and has the property that the wave pattern grows uniformly with time. 
Sternberg (1959) has compared the equations for stationary and pseudo- 
stationary flow and found that in small local regions the pseudo-stationary 

Air CH4 cog 
Ratio specific 1.402 1.303 1.288 

Mol. wt. (A) 29.02 16.04 44.01 
heats ( y )  

TABLE 1. 

equations reduce to the stationary equations. It will be assumed here that the 
analysis will be valid for both types of flow in the neiglibourhood of the refraction 
point. It will also be assumed that the gases are perfect, inviscid, and of constant 
specific heats. The following equations are now available from one-dimensional 
shock theory: 

and (3) 

In  addition there are the following continuity conditions to be satisfied a t  the 
interface 

(4) 

P T P B  = (Pl/PO) (P2IPI). ( 5 )  

Equations (1) to (5) will be collectively described as the equations of motion; 
there are seven of them altogether and they involve twelve variables 

dB = &+a,, 

Thus to define a solution or set of solutions it is necessary to assign values to five 
of tbe variables and for this purpose it will be convenient to select yo,B, 
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&?CH,,CO,/&?air, P,/P,, M,. A particular set of values of these variables will be the 
initial conditions corresponding to a set of solutions. 

The equations of motion can now be reduced to a single polynomial equation 
of degree 12, where the polynomial variable is PTIP,. The method has been given 
before (Henderson 1964) and by this means explicit expressions may be obtained 
for computing the coefficients exactly.? There are now 12 roots or solutions to 
be considered but a root must satisfy a t  least two criteria before i t  can be 
regarded as having physical significance. These are : 

(i) The root must be real because no meaning can be attached to an unreal 
value of PTIPB. 

(ii) PT/PB 2 P,/P, 2 1 ; this condition is necessary to avoid thermodynamically 
impossible expansion shocks. 
Occasionally it is found that for particular initial conditions one wave in the 
system will degenerate to a Mach line. Such a result will be thought of as 
physically trivial. The integers mcH, and mco, will be used to indicate the number 
of physically significant and non-trivial roots. 

A complete picture of the physical meaning of the polynomial requires a 
knowledge of all the physically significant single and multiple roots. The neces- 
sary data were obtained from a computer using the exact expressions. The part 
of the data that satisfies the above tests has been plotted in figures 7 and 8. It 
will be noted that an ordinate line P,/P, = const. will cut the curves for the 
air-CH, refraction in either mCH, = 0, or 2 places, while for the air-CO, refraction 
it will cut in either mco, = 0, 2, or 4 places, a fact that displays the multiple 
nature of the solutions for given initial conditions. A double root occurs where an 
ordinate line is tangent to a curve. These roots have been separately computed 
and the results are presented in figures 9 and 10. 

The equations of motion can also be solved graphically in the hodograph 
(6, PIP,) plane using the well-known shock polar method, figures 11-17. The real 
roots of the polynomial are then represented by the ordinates of the polar inter- 
sections. The polar diagram shows that the polynomial aIways has a double root$ 
at  PT/PB = 1. This may be seen at  once by noting that the polars for the incident I 
and reflected I11 shocks pass through each other’s double point D, and D, 
(Henderson 1964). Now one of these points D, is at  ( 0 , l )  and because the double 
point of the CH, or CO, polar I1 also passes through D, then the double root 
(PT/PB- 1), must exist. Although it is not physically significant it saves a 
substantial amount of work on the computer if this double root is removed by 
synthetic division. The polar diagrams have several useful functions-for example, 
they facilitate the understanding of the polynomial root structure and also help 
in the physical interpretation of these roots, but perhaps their most useful func- 
tion is that they can be used to construct an orderly sequence of events for 
gradually changing boundary conditions. Of particular interest will be the 
sequence that can be deduced by imagining that the polar for the reflected 

t The original version of the present paper contained the expressions as an appendix 
but lack of space in publication forced them to be deleted. They are available on request 
from the author. L.F.H. 

$, I am indebted to Mr McPherson for pointing the double root out to me. 
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FIGURE 7. Physically significant roots of the polynomial equation for the regular refraction 
of a plane shock at the air-CH, interface. --, polynomial root line; --, sonic line; 
----, normal shock line. (a)  Mo = 1.5; ( b )  M,, = 2.0; (c) M,  = 3.0; (d) Mo = 4.0; ( e )  Mo = 5.0. 
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FIGURE 8. Physically significant roots of the polynomial equation for the regular refraction 
of a plane shock a t  the air-GO, interface. -, polynomial root line; --, sonic line; 
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(f) M,  = 4.0; (9)  Mo = 4.5; (h) Mo = 5.0. 
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shock I11 is initially in coincidence with the polar for the incident shock I and is 
then gradually and continuously displaced from it. Physically this is equivalent 
to the incident shock being initially a Mach line and then gradually strengthening 
into a shock of increasing intensity. During this process the Mach number No 
upstream of the incident shock is held constant. 

4. Regular refraction at the air-methane interface 
From equation ( l b )  it  may be concluded that the methane polar I1 does not 

exist? over the Mach-number range Mo < 1-30. There are no physically significant 
roots of the polynomial equation in these circumstances and the appearance of an 
irregular wave system is therefore to be expected. The limiting condition is 
represented in figure 9 by the ordinate line No = 1-30. For the Mach-number 
range 1.30 < Mo < 1.55, it can be shown that the methane polar I1 is entirely 
contained inside the air polar I, as in figure 11. This fact may be demonstrated by 
computing the intersection points between I and I1 and it is then found that the 
polars do not intersect until Mo 2 1-55, except of course at  D,. If I11 is now slightly 
displaced from I as shown in figure 11 (a) ,  then in general two polar intersections 
a, and a, will be obtained. Physically, both points represent a regular refraction 
with a reflected shock. The hodograph diagram shows that the pressure ratio 
across the transmitted shock is smaller for the a, solution than for the a, 
solution and for this reason the a, solution will be defined to be the weaker 
of the two solutions. It will be convenient to arrange the solutions as an 
ordered set of numbers in ascending order of magnitude thus (a,,a,). With 
continuous displacement of 111, a, and a2 approach each other, figure 11 (b), and 
eventually coincide to form a double point as in figure 11 (c). This coincidence will 
be denoted by a, = a, and it evidently corresponds to a double root of the poly- 
nomial. If displacement continues any further a, and a2 will become unreal and 
there will then be no solutions of physical interest. This again suggests the 
appearance of an irregular wave system but a discussion of it will be deferred for 
the present. It therefore appears that the physical significance of the double root 
a, = a, is that it  is a boundary between regular and irregular wave systems. The 
root was determined on the computer and the results are shown in figure 9. 

Over the Mach-number range 1.55 < M, < 2.25 the methane polar I1 lies 
partly outside the air polar I and this leads to the type of sequence shown in 
figure 12. When I11 is displaced from I by a small amount, then once more there 
are two intersections of physical interest (a,, a,). If polar I11 is extended below 
D, then an extra solution /3, is obtained ; although this solution is not physically 
significant it is important in the way it forms a double point with a,, as will be 
shown presently. It is also possible to construct a graphical solution in which the 
wave system contains a reflected Prandtl-Meyer expansion instead of a reflected 
shock. This may be done with the help of the characteristic c, which passes 
through the point D,. This curve intersects I1 at the point 8, and the ordered set 
now becomes (el, a,, a,), figure 12 (a).  The polynomial equation is not of course 
valid for a solution of the E ,  type and any discussion of it given here must be 

t Because, from equation ( l b ) ,  McH, < 1 when Mai, < 1.30. 
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FIGURE 11. For legend see facing page. 



I V  

Refraction of a plane shock wave at a gas interface 

pip, I 

619 

s 

m 

FIGURE 11. Sequence of events resulting from the displacement of polar I11 from polar I 
for the refraction of a plane shock i at an air-methane interface in the Mach-number range 
1.30 < M,  < 1.55. 
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FIGURE 12. Sequence of events resulting from the displacement of polar I11 from polar I for 
the refraction of a plane shock i at an air-methane interface in the Mach-number range 
1.55 < M,  < 2.25. 
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mainly qualitative. The points p, and el are usually so close together that they 
cannot be separately distinguished. As displacement continues, the point D, 
eventually reaches A,  which is one of the intersection points between I and 11. 
When this happens the point D,  is simultaneously joined by the solutions a,, /?, 
and el so that there is the coincidence D, = a, = p1 = el sz A,, as shown in 
figure 12 ( b ) .  For a,, p, and el the physical consequence is that the reflected wave 
has now degenerated to a Mach line. With further displacement, both the p1 and 
el solutions become unreal but the a, solution strengthens so that the set is now 
(a,, a,). It may now be concluded that the physical significance of the coincidence 
D, = a, = ,/I1 = el = A ,  is that it represents the boundary between a regular 
refraction with a reflected expansion and a regular refraction with a reflected 
shock. The double root line a, = p1 has been determined on the computer and the 
results are shown in figure 9. With further displacement a, and 01, approach and 
then coincide a, = a,. The resulting double-root line is merely part of the one 
found in the range 1.30 < No < 1-55 as also shown in figure 9. Finally, with any 
more displacement a, and a, become unreal, which again suggests the appearance 
of an irregular wave system. 

From figure 9 it will be noted that the two root lines a1 = a, and a, 3 ,dl 
coincide when No > 2-25. A typical sequence for this condition is shown in 
figure 13. The ordered set is again (el, a,, a,) but the el solution is now co-extensive 
with the a1 and a, solutions, so that it exists whenever they do. With continuous 
displacement of D, the physical result is that all solutions eventually and 
simultaneously form a Mach line degeneracy a t  D, = al = a, = p, = el = A ,  and 
beyond this condition irregular systems are to be expected. There are two other 
curves in figure 9 of interest. One of them is for the condition where the flow 
downstream of the incident shock is sonic. Clearly there can be no reflected wave 
if the flow downstream of the incident shock becomes subsonic and the sonic 
curve is therefore the limiting condition. The remaining curve is the condition 
for glancing incidence of the shock i on the interface and along this curve a = 90". 

5. Regular refraction at the air-carbon dioxide interface 
The first sequence is shown in figure 14 and its characteristic feature is that the 

air polar I is contained inside the carbon dioxide polar 11. This occurs for the 
Mach-number range M, < 1.38. The only regular refraction that is now con- 
ceivable is e, so that in this case there is a unique solution. As the point D, is 
continuously displaced it ultimately reaches the sonic point V on I D, = V .  
This means that the flow downstream of the incident shock must now move at 
sonic speed and furthermore the reflected expansion must degenerate to a sonic 
Mach line. The sonic curve is plotted in figure 10. No physical meaning can be 
attached to the regular solution if there is any further displacement of D, and 
once more the appearance of an irregular refraction is implied. The next sequence, 
figure 15, is typical of the Mach-number range 1-38 < M, < 2.0 and the air polar I 
is now partly outside the CO, polar 11. A small displacement of I11 now yields four 
intersections so that the ordered set becomes (a,, /I1, p2, a,). As displacement 
continues, the coincidence p, = p, is formed and the corresponding double-root 
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FIGURE 13. Sequence of events resulting from the displacement of polar I11 from polar I 
for the refraction of a plane shock i at an air-methane interface in the Mach-number range 

line obtained from the computer is shown in figure 10. Further displacement 
causes p, and p, to become unreal and the set reduces to (a,, a,). The next event of 
interest is the formation of the coincidence D, = el = a, = a, = A ,  and the cor- 
responding double root a, = ag, obtained from the computer, is also shown in 
figure 10. At this condition the reflected shocks of the a, and a, solutions are Mach 
line degeneracies. With any further displacement a, and a, lose their physical 
significance and their place is taken by the unique solution el. The double-root 
line a1 3 a, is thus a boundary between a regular refraction with a reflected 
shock and a regular refraction with a reflected expansion. The 8, solution begins 
with a Mach line degeneracy at  the above coincidence and finally ends as a sonic 
degeneracy at  the coincidence D, = el E V,. Beyond this last coincidence an 
irregular system is to be expected. Hence for the range 1.38 < M, < 2.0 the sonic 
line is a boundary between a regular refraction with a reflected expansion and an 
irregular refraction. 

For the Mach-number range 2.0 < Mo < 2.5 there is only one essential change 
in the sequence compared with the one shown in figure 15. Over this range the 
computer results show that there is the coincidence A,  = V,, which means that 
the double-root line a, = a, coincides with the sonic line as shown in figure 10. 
The physical consequence is that the el solution is now degenerate but otherwise 
the sequence is similar to that of figure 15. The next sequence, figure 16, is typical 
of the Mach-number range 2.5 < M, < 2.92 and here the computer shows that 
the sonic point V, is below the polar intersection A,. In  consequence, the double- 
root line a1 = a, is slightly below the sonic line in figure 10. Continued displace- 
ment now causes the a, and a, roots to become unreal after the a1 = a, coincidence 
has been formed. The physical result is that, instead of forming Mach line 
degeneracies, the reflected shocks of the a, and a, refractions actually have finite 
strength at  the double root. A somewhat similar situation was encountered in 
figure 11 (c). Further differences in the polar diagrams arise when H, 2 2-92 and 

40 Fluid Mech. 26 
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FIGURE 14. Sequence of events resulting from the displacement of the characteristic G,  
from the point D, for the refraction of a plane shock at  an air-carbon dioxide interface in 
the Mach-number range Mo < 1.38. 
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FIGURE 15. Sequence of events resulting from the displacement of polar I11 from polar I 
for the refraction of a plane shock i at an a+carbon dioxide interface in the Mach-number 
range 1.38 < M, < 2.0. 
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FIGURE 17. Polar diagram sequence resulting from the displacement of polar I11 from 
polar I for the refraction of a plane shock i at an air-carbon dioxide interface in the 
Mach-number range M,, >, 2.92. 

these axe illustrated in figure 17. At first the sequence is similar to those shown 
in figures 15 and 16, but then with continued displacement the polar for the 
reflected shock I11 is found to grow rapidly in the vertical direction until it forms 
the new intersections y1 and y, and the set becomes (al, a,, yl, y2). As displace- 
ment continues the coincidence a2 2 y1 is formed and these roots then become 
unreal, reducing the set to (al, y2) .  The double roots corresponding to yl = y, and 
a, = y1 have been computed and are plotted in figure 10. With continued dis- 
placement the polar I11 eventually begins to shrink and in the approximate range 
2-92 6 M ,  6 4.0 this causes a2 and y1 to become real again. In  these circumstances 
continued displacement next results in the coincidence y1 = y 2  and then these 
roots become unreal. Finally, one obtains a, = a, and these roots also become 
unreal. At first sight this sequence may seem complicated but it is easily deduced 
from the curves of figure 10. 

6. The multiplicities and their physical significance 
At this stage it would be desirable to devise further tests for the physically 

significant roots shown in figures 7 and 8 so that they could be eliminated one at 
a time until only a unique solution remained. If the tests were correctly based, 
then it would be this solution that would appear in an actual experiment. While 
at present it does not seem to be possible to attain this ideal state, an additional 
physical argument can be brought to bear which gives a plausible reason for 
selecting a particular solution from the ordered set. Consider, for example, the 
situation shown in figure 11 (a) ,  (b )  where both the a1 and az solutions exist and 
the problem is to decide which one of them will appear in an experiment. The 
argument that will be used here is based on Guderley’s (1947) classical discussion 
of the flow over a wedge. Clearly if the wedge angle is smaller than the attach- 
ment angle for the free-stream Mach number then there will be two solutions for 
the shock wave at  the wedge apex. It is well known from experiment that it is 
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the weaker one that is relevant, but Guderley has given plausible conditions for 
the appearance of the stronger solution. His discussion cannot be detailed here, 
but briefly he follows Busemann’s idea that there should be an obstruction down- 
stream of the wedge in order to maintain a higher pressure there. Guderley takes 
this obstruction to be a second wedge whose angle exceeds the attachment angle 
of the free-stream Mach number. This will be called here a ‘strong’ disturbance. 
The second wedge is initially placed well downstream to ensure that the weaker 
solution appears a t  the apex of the first wedge. The downstream wedge is then 
gradually moved upstream until it ultimately forces the weaker solution to 
change into the stronger solution. It seems reasonable that a similar argument 
would be valid for the (a,,a,) solutions of the shock-refraction problem. In 
particular, if there are no bodies or boundaries making a strong disturbance in 
the downstream flow then the weaker a, solution is to be selected. This hypothesis 
will be generalized here by assuming that for any ordered set it  will be the weakest 
solution that will appear when all internal and external boundaries are at 
infinity. 

The usual method mentioned in the literature for resolving the multiplicities is 
to assume that, in the limit when the incident shock degenerates to a Mach line 
P,/P,-+ 1, a physically valid solution must be consistent with the known results 
of acoustic theory and those that do not satisfy this requirement are discarded. 
Unfortunately this test, fails for both the air-CH, and the air-CO, refractions 
because inspection of figures 7 and 8 shows that at least some of the multiplicities 
are always preserved at  this limit. 

7. Comparison of the theory with Jahn’s experiments 
The computer was used to obtain additional numerical data in a form that was 

suitable for direct comparison with the experimental results obtained by Jahn. 
It will be convenient to assume here without loss of generality that Jahn per- 
formed a series of experiments in the following sequence. The pressure ratio 
across the incident shock was held constant and then with the angle of incidence a 
initially small the experiments were carried out one at  a time with successive 
increases in a until an irregular wave pattern was obtained. Under these condi- 
tions increasing the value of a is equivalent to reducing the Mach number M,. 

From figure 9 it is apparent that for the air-CH, refraction the effect of 
reducing Mo when = 0.85 or P,/P, = 1.176 will be a sequence of events similar 
to that shown in figure 12. The ordered set is initially (el, a,, a$), but the a1 and a, 
solutions will be rejected on the assumption that there are no internal or external 
boundaries causing a strong disturbance in the flow. The polynomial data are not 
applicable to the el solution but the adjusted Polachek & Seeger calculations 
agree well with Jahn’s data, figure 3. As a increases the el solution eventually 
loses its physical significance and the set is reduced to (a,, a,). The a, solution is 
selected and the data obtained from the computer agree well with Jahn’s data, 
figure 3. The a2 results are shown for comparison. When ( = 0.3 or P,/P, = 3.33 
the sequence is similar to that shown in figure 13 and initially there is again the 
set (el, al, a,). The el solution is selected and the adjusted Polachek & Seeger 
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results again agree well with the experimental data, figure 5.  It was pointed out 
earlier that for this sequence the set is mutually co-extensive so that it is especi- 
ally interesting to find that there is one experimental point corresponding to an 
a, solution. Two alternative explanations can be offered. First, the boundary 
conditions may have been altered during the course of the experiments causing a 
strong disturbance to appear in the flow, This could have been done by altering 
the position of the back plate. Otherwise the point may represent an incipient 
irregular refraction which had not developed sufficiently to cause a measurable 
deviation from the regular refraction. This explanation appears to be more likely 
because the initial irregular refraction photographed by Jahn, figure 13 (c) ,  is very 
similar in appearance to the regular refraction. 

For the air-CO, refraction the sequence of events when 6 = 0.85 or PJP, = 1.176 
is similar to that shown in figure 15. Initially there istheset (a1,/3,,/3,,a,) andthen 
(al, a,), but the al solution is selected in both cases and it agrees well with experi- 
ment, figure 3. The a, solution was so much stronger that it could not be shown 
on the same diagram. As a increases the reflected shock eventually degenerates 
to a Mach line and beyond this condition only the el solution is valid. Here also 
the adjusted Polachek & Seeger results agree well with experiment. When 
6 = 0.3 or PJP, = 3.33 the sequence is again similar to that shown in figure 15, 
but in this case there is a very limited range for the el solution. The a, solution 
agrees reasonably well with experiment, figure 4, although there is some dis- 
crepancy in the range 35" < a < 55". There is also some difference between the 
adjusted Polachek & Seeger results and the a1 results. 

8. The irregular wave-refraction systems 
Jahn has also used the shock tube to make a study of the irregular wave 

systems. The objective here will be to find out how far a discussion of these 
phenomena can proceed on the basis of the hodograph diagram. It will be 
assumed that the problem can be treated as stationary, which of course is not 
strictly correct, but it will be approximately true if the essential features of the 
system are confined within a small region. Although not essential it will help the 
discussion if for the present all boundaries are assumed removed to infinity. 
Consider again figure 13, which, it will be recalled, is valid for an incident shock 
of strength 6 = 0.3. In  figure 13 (a) and ( b )  the transmitted shock t maps into the 
segment D, D, on polar I, while the refleeted expansion e maps into the segment 
D,el in figure 13 (a )  and degenerates into the coincidence D, = el in figure 13 ( b ) .  
When the polar I11 is displaced beyond this coincidence as in figure 13 (c) a gap 
opens into the interior of polar I in the sense thatwas discussed by Guderley (1947) 
and Kawamura & Saito (1956). The hodograph map of the wave system is now 
much extended.? For this condition Jahn observed the wave system shown in 
the physical plane of figure 13(c). According to the polar diagram the reflected 
shock at  the refraction point should be determined by the point F.  This conclu- 
sion can be tested against experiment because Jahn has published the necessary 
data. They have been reproduced here in figure 6. The point F was studied on the 

The mapping technique has been discussed previously in greater detail (Henderson 
1965). 
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computer for 5 = 0-3 and it was found that it appeared on the subsonic parts of 
both polars I and I11 and moreover that the reflected shock had zero curvature 
a t  the refraction point. The point P is then what Sternberg (1959) defined as a 
Group B type intersection. This last fact is important because it indicates that 
reliable measurements of the reflected shock can be made in the vicinity of the 
refraction point. The theoretical curve for the point P is compared with the 
experimental data in figure'6. Agreement is satisfactory for cc < 56" but a marked 
discrepancy develops for a larger value of a. At these larger values of a experi- 
ment shows that the wave system is modified by the appearance of a Mach 
stem n, figure 13 ( e ) ,  and evidently the discrepancy shown in figure 6 is caused by 
the growth of this extra wave. A plausible explanation for the growth of the Mach 
stem can be given on the basis of the polar diagrams as follows. 

Referring to figure 13 ( c )  the total streamline deflexion caused by the incident i 
and reflected r shocks does not exceed the attachment angle S,,,, for the trans- 
mitted shock t ,  viz. &, < &,,,. However, as a continues to increase the polar I11 
shrinks relative to the other polars and this causes 8, to increase relative to S,,,, 
so that eventually 8, = St,,, as shown in figure 13 (d). If a increases any 
further then &, > &, and the deflexion across the transmitted shock t can 
no longer match the combined deflexions across the shocks i and r. It is 
suggested that it is this condition that forces the growth of the Mach stem 
n, figure 13(e). The shock n is curved and so it is able to make the necessary 
adjustment between t on the one hand and i and r on the other. The critical 
condition shown in figure 13(d) was determined and for 5 = 0.3 it  was found 
to occur at  a M 53". Now figure 6 shows that theory and experiment do not 
begin to deviate significantly until a > 56". This discrepancy can be explained if 
the Mach stem grows very slowly in the initial stages. Experiments with simple 
Mach reflexion have indeed shown that the growth of the Mach stem is initially 
slow (Kawamura & Saito 1956 and Smith 1959), in fact to such an extent that its 
onset is difficult to detect. In  this connexion the interferometer is particularly 
insensitive and Smith has even described it as 'completely useless in determining 
the transition between regular and Mach reflexion'. Some criticisms have been 
levelled at  Jahn in this respect (Pack 1964). To complete this aspect of the 
problem it would be necessary to continue the calculations of the point F into 
the Mach reflexion system shown in figure 13 (e ) .  However, this requires a know- 
ledge of the angular position of the world line that passes through the point F 
and the necessary data are not given in Jahn's paper. 

The polar diagrams in figure 13 extend into the negative & half plane once the 
gap into the interior of polar I has opened. A physical consequence is that both the 
shocks t and n must be partly inclined forward in the flow. In  plate 12 of Jahn's 
paper the back plate has been set parallel and fairly close to the interface and it 
evidently makes a strong disturbance in the flow. A sketch of the wave system 
shown in the photograph is reproduced in figure 13 (9) and there can be no doubt 
from the original that the shock t inclines forward. In the absence of boundary- 
layer separation this shock will be locally normal to the back plate and its end- 
point will map into the point B. The other end-point will be on the gas interface at  
A ,  where it is joined by the Mach stem n. From the polar diagram it is concluded 
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that there is continuity in both pressure and streamline direction across the 
interface at A,. From A ,  to C the Mach stem is inclined forward with respect to 
the confluence point F and the original photograph clearly shows that n has the 
required shape. The polar diagram also shows that in the vicinity of F the flow 
downstream of both the shocks n and r is subsonic, but further away from F the 
flow downstream of both shocks is supersonic. This implies the existence of a 
local subsonic patch at F which is terminated by the sonic line G,K, but the 
detailed shape of this line cannot be deduced from the polar diagram. 

In plate 6 of Jahn’s paper or figure 1 3 ( f )  here, the back plate has been set 
further away from the interface and at  the same time the angle OL. has been 
reduced. These changes do not alter the character of the polar diagram, but the 
photograph shows that some of the above effects are less pronounced. In parti- 
cular the confluence point F moves closer to the refraction point A ,  and it 
becomes more difficult to detect the parts of the shocks t and n that are inclined 
forward. The back plate is evidently having less effect on the flow in the vicinity 
of the refraction point A,. In plate 5 of Jahn’s paper or figure 13(c)  here the 
situation has been taken a step further with a reduced again and with the 
boundaries no longer apparently having any effect on the system near A,. The 
polar diagram has now been significantly altered in that the condition SF > S,,,, 
has now changed to 8, < S,,,, and therefore the point F is able to approach the 
point A very much more closely. The polar diagram still indicates that n exists 
and still requires t to be inclined forward at  A ,  but neither of these features can 
be distinguished in the photograph. It is suggested here that the wave systems 
shown in plate 5 or figure 13(c)  and ( d )  are actually of the form shown in 
figure 13 (e), but that the features of the system in the neighbourhood of BA,CF 
are too close together to be resolved by the interferometer. This argument can 
be strengthened by noting that the streamlines entering the subsonic patch 
crowd together as they pass out through the gap A,D, in the hodograph plane. 
According to Kawamura & Saito, who in turn follow Busemann, a region of 
subsonic flow where the streamlines crowd together corresponds to a region of 
nearly uniform flow in the physical plane, and by contrast where the streamlines 
are rare in the hodograph plane then there is a region of rapidly changing flow 
properties in the physical plane. If this idea is applied to the refraction problem 
shown in figure 13(e)  then just after transition it would be concluded that the 
region BA,CF would be shrunk almost to a point in the physical plane and the 
observed flow would be dominated by the conditions at A,. 

If now 5 is increased the effect on the polar diagram is for the intersections A ,  
and A,  to move towards D, so that eventually they will coincide with the sonic 
points W, and W, of polar I1 and with any further increase in they will move on 
to the supersonic part of 11. Attempts to construct a polar diagram for this con- 
dition were not very satisfactory from the physical point of view. Guderley (1947) 
during a discussion of transonic wave systems has even expressed the opinion that 
this type of intersection is physically meaningless and suggests that instead the 
polars should be joined by a characteristic curve. This idea has been adopted here 
and the curve c ,  has been constructed in figures 12 ( e )  and (f); it begins at  the 
sonic point W,. When tincreases from 0.3 as in figure 13 ( e )  to 0.85 as in figure 12 (f) 
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the following physical changes are indicated. Once the refraction point A ,  enters 
the supersonic region of 11, expansion waves are generated at  this point. These 
waves intersect the Mach stem n and cause the sonic point G, to move towards 
the confluence point F and eventually to join it. With continued development 
there is ultimately supersonic flow downstream of the entire length of n and this 
makes it possible for an additional shock j to propagate from F into the flow 
downstream of n. A fourth polar must then be added to the hodograph diagram 
to accommodate j as in figure 12(f). Jahn has published two photographs, 
plates 7 and 8 of his paper, of wave systems similar to that shown in figure 12 (f) 
but the present writer cannot decide from them if the expansion el is present, 
although the wave n in plate 7 does have the required shape. If the expansion is 
present then the Mach number downstream of n will be variable and the map 
o f j  will deviate somewhat from the polar segment shown. The sonic lines s1 and s, 
will also be present if the pressure immediately downstream of the waves is 
sufficiently larger than the ambient pressure far downstream. Both sonic lines 
are present in plate 7 of Jahn’s paper. 

Jahn found the irregular wave systems for the air-CO, interface to be much 
less complicated than for the air-CH, interface. In  fact for the two values of 
6 = 0.3, 0.85, and with variable a he found essentially only one irregular system. 
For < = 0.85 the theory predicts that the irregular system will begin to appear 
once the point D, has reached and then passed the sonic point V, on polar I as in 
figure 15(e),  (f). The system photographed by Jahn has been sketched in the 
physical plane of figure 15 (f). The shock i is curved near the interface and in this 
region it emits a continuous band of expansion waves. This means that a decreases 
along the shock and presumably becomes a minimum at the interface. The 
solution at  the interface has been constructed in the hodograph plane and it will 
determine both the shock t and the expansion el. However, because the Mach 
number M, varies along i, the maps of i and of the expansion band eren are not 
simple. The sequence shown in figure 15 is also relevant to the shock of strength 
6 = 0.3. There appears to be no physically significant difference indicated either 
theoretically or experimentally between the irregular systems for 6 = 0.3 and 
0.85. These were the only wave strengths mentioned in Jahn’s paper but from 
figure 10 it will be noticed that for M, > 2.5 or < 0.16 the polar diagram must 
have different character when the system becomes irregular. The diagrams are 
shown in figures 16 and 17. Consequently it is possible that a new type of irregular 
system may appear for these stronger incident shocks. 

9. Concluding remarks 
The use of the polar diagram has the advantage of bringing some order and 

coherence to the quite complicated phenomena that were observed in Jahn’s 
experiments. However, there is need of some additional experiments and these 
should preferably be carried out with the help of a shadowgraph or Schlieren 
system as well as an interferometer. Among the problems that need to be explored 
in more detail is the growth of the Mach stem. This requires in particular more 
data of the type shown in figure 6 with, in addition, some information on the 
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angular position of the shock confluence point F. Another problem is that of the 
transition from the Mach-reflexion type of irregular refraction for [ = 0.3 to the 
more complex type for 6 = 0.85 and it would be of especial interest to find out 
if the transition is brought about by the appearance of an expansion fan at the 
refraction point A,. To augment and perhaps complete the picture of the irregular 
refraction types it also seems to be necessary to photograph the irregular system 
for the air-CO, interface when [ < 0.16. This experiment may reveal a previously 
unknown phenomenon. 
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